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Since guidelines for choosing ‘most probable' parameters in ground engineering design 
codes are vague, concerns are raised around their definition, as well as the associated 
uncertainties. This paper introduces Bayesian inference for a new rigorous approach to 
obtain the estimates of the most probable parameters based on observations collected 
during construction. Following the review of optimization-based methods that can be 
used in back analysis, such as gradient descent and neural networks, a probabilistic model 
is developed using Clough and O’Rourke’s (1980) method for retaining wall design. 
Sequential Bayesian inference is applied to a staged excavation project to examine the 
applicability of the proposed approach and illustrate the process of back analysis. 

 

Introduction 
Deep excavations for underground spaces or other infrastructure have become common practice in 
many cities around the world in the past few decades. However, excavation induced movement is still a 
major concern in most underground construction projects, since it may cause significant displacements 
and rotations in adjacent structures, and hence lead to damage or even collapses. Therefore, accurate 
predictions of lateral wall deflections and surface settlements are critical in the design of excavation 
support systems. Excessive conservatism due to uncertainties in underground conditions and the 
assessment of soil properties often results in over-predictions. The observational method (OM) (Peck, 
1969) can be applied in staged excavations to reduce redundant construction phases to save materials, 
time, and costs.  
 
The selection of parameters to be used in design within the OM has long been an issue of discussion, in 
particular when linked with different interpretations of the process for practical applications. Four 
approaches based on the timing of the decision to adopt the OM and the level of conservatism are 
described in Hardy et al. (2017). Most of them require the definition of ‘most probable’ conditions for 
design. During construction, a best estimate of future ground movements is also required to support 
decisions on altering the construction sequence. 

In CIRIA (the Construction Industry Research and Information Association) ground engineering design 
codes (Gaba et al., 2003; Nicholson et al., 1999), the ground condition most likely to occur in practice is 
represented by the ‘most probable' soil parameters. The ‘most probable' set of parameters is defined in 
C185 (Observational method in Ground engineering) as the probabilistic mean of all possible conditions 
(Nicholson et al., 1999). In Hardy et al. (2017) the ‘most probable value' is also defined as the 
‘arithmetical mean of the available data’. However, C580 (Embedded Retaining Walls: Guidance for 
Economic Design) also mentions that the ‘most probable values’ have a 50% probability of exceedance, 
which implies that the most probable value is the median value of the distribution of the parameters 
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(Gaba et al., 2003). The two methods of choosing ‘most probable’ parameters presented in C185 and 
C580, respectively, achieve the same result if the parameters follow the Gaussian distribution. However, 
this set of ‘most probable’ parameters does not necessarily predict the ground response which is ‘most 
likely’ to occur in practice because the ground and the system responses are usually non-linear (Murphy, 
2012; Houlsby and Houlsby, 2013).  
 
In the current literature and practice, ‘most probable’ parameters are generally obtained through back 
analysis as a calibration process to produce the best match between predictions and available 
observations of ground movements. These parameters are also expected to produce the most accurate 
prediction of the ground movement in future excavation stages. However, no standardized guidance is 
available on what constitutes the best match or how to choose the ‘most probable’ parameters.  
 
In this article we apply the Bayesian method to explore the definition of ‘most probable’ parameters and 
demonstrate the process of obtaining those parameters through a rigorous process. We start by 
introducing and discussing some techniques used in back analysis. 
 

2. Back analysis in the observational method 
Previous studies (Yeow and Feltham 2008; Yeow et al. 2014) demonstrated that back analysis can be 
applied successfully in the observational method. However, the set of parameters that produces the best 
match with the observations is still processed manually relying solely on engineering experience and the 
operator’s individual judgement, which might lead to biased results (Houlsby and Houlsby, 2013).  
 
In a more quantitative way, back analysis is often formalized as an optimisation problem, defined as a 
minimization process of a given loss function, such as residual sum of squares. There are two categories 
of optimisation methods: the classical methods, such as gradient descent, and those derived from 
evolutionary computation, such as genetic algorithms (GA) and neural network (NN). Since numerical 
methods, such as finite elements, have become powerful tools for engineering design, they are also 
widely integrated into the optimisation approaches in back analysis to study the relationship between 
input soil parameters and the soil movement. 
 
2.1 Classical optimisation methods 
Classical optimisation theories, such as the gradient descent method, have been successfully applied to 
excavation projects. Ou and Tang (1994) used it to determine two unknown parameters in the pseudo-
elastic hyperbolic Duncan-Chang model, by minimising the sum of the square of differences between 
observed and predicted values of the horizontal wall movement. The convergence properties and the 
stability of the algorithm were verified through a synthetic case and a case history. Calvello and Finno 
(2004) used a modified gradient descent method to update four soil parameters based on the stress-
strain curves obtained from laboratory tests and inclinometer readings. Finno and Calvello (2005) applied 
a gradient-based inverse analysis procedure to update predictions of lateral deformations observed 
during an excavation in Chicago glacial clays. The optimisation was based on the readings obtained from 
inclinometers at every stage. The soil-structure interaction was described by the Hardening-Soil (H-S) 
model (Schanz et al., 1999) and one of its six parameters, the reference value for the primary loading 
stiffness, was optimised. The predictions for later stages based on the optimised parameter using all 
observations were largely improved with an accuracy of 3 mm (12.5% of the maximum displacement) 
for the final stage. 
 
2.2 Genetic algorithms 
The Genetic algorithm (GA), inspired by the biological processes of natural selection and survival of the 
fittest, is one of the most popular choices in back analysis. It is able to solve complex optimisation 
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problems with large, discrete, and non-linear models. GA incorporates implicit parallelism, which 
considers many points at the same time during the search process, and hence it is robust and highly 
efficient (Solomatine et al., 2009). For geotechnical practice, GA was found particularly suitable to 
identify soil parameters when the underlying norm of the error function is complex (Levasseur et al., 
2009). Furthermore, Pichler et al. (2003) noted that the evolution of the population process could 
provide information about both parameter sensitivity and the existence of mathematical correlations 
between parameters.  
 
Levasseur et al. (2008) used GA to estimate three parameters (shear modulus, friction angle and initial 
lateral earth pressure at rest) controlling the horizontal displacements of a sheet pile wall. The 
optimisation procedure converged to a set of reasonable solutions, but not necessarily a unique one. 
Further considerations, such as an assessment by geotechnical experts, would be necessary to make a 
reasonable choice of parameter values from the set of solutions.  
 
Rechea et al. (2008) optimised the reference value for the stiffness of two soil layers by using both 
gradient descent and GA on synthetic data and horizontal deflection measurements from a published 
case history (Finno et al., 2005). They concluded that the parameters obtained by GA were close to the 
global optimum only when the search space was set as 1/4 to 4 times the actual value of the parameters. 
The significance of this conclusion is limited to the particulars of this case history and cannot be 
generalized to other cases. In addition, the authors pointed out that GA is more time consuming than 
the gradient descent method. 
 
2.3 Neural networks 
As an alternative approach, artificial neural networks (ANNs) consist of simple elements called neurons 
that are able to receive input, change their internal state and produce an output, according to the input 
and a pre-defined activation function. The network, constructed by connecting the output of certain 
neurons to the input of other neurons, forms a directed and weighted graph, where the neurons are the 
nodes and the connections between the neurons are directed edges with weights. The weights and the 
activation functions are updated by a process called learning, which is governed by rules (Harrington, 
2012). The ANNs method has been adopted in back analysis to model the complex relations between 
soil parameters and ground response. The conventional pre-defined constitutive model can be replaced 
by the ANNs material model. The parameters in ANNs model are optimised to predict future field 
measurements.  
 
A self-learning approach called SelfSim was developed by Hashash and co-workers (Hashash et al., 2003, 
2011, 2010, 2006). They introduced the concept of 'training’, in which the NN material model is trained 
with available stress-strain data and the unknown parameters in the model are updated. Moreover, this 
model can be trained continuously when there are new input-output data available. The soil model 
obtained from the training progress can be used in the forward prediction of future excavations or later 
excavation stages. This approach was also applied to synthetic cases modelled by finite element analysis 
(Hashash et al., 2003), and many successful applications were produced in both 2D and 3D case histories 
(Finno and Calvello, 2005; Finno and Roboski, 2006; Hashash et al., 2010, 2006). The accuracy of 
prediction for lateral ground movement is about 20%. However, the ANNs material model can only be 
narrowly applied to the same case and circumstances in which it was derived and cannot be used for 
different soil layers with variable properties.    
 
2.4 Limitations of optimisation based back analysis  
When the optimisation techniques described in previous sections are applied to the back analysis using 
field measurements, many concerns are raised in regards to the efficiency, as well as the accuracy. For 
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example, the GA method usually requires long computation times. Moreover, these optimisation-based 
methods are only able to analyse a relatively small number of parameters (Miranda et al., 2015, 2011). 
 
The ANNs approach, in particular, is a black-box model in which the functional form of the relationships 
between model variables is unknown and needs to be estimated using data. The parameters in the ANNs 
model only represent the connection between the network nodes as captured by weights. Therefore, 
the ANNs model is only able to describe the end-to-end relationship and provide the output directly, but 
does not unfold any physical deduction processes. Hence, ANNs is not interpretable and may not be 
assessable by engineers. 
Because the ANNs model is effectively shaped by data, a large amount of data is required for training the 
model, but can be difficult to gather.  
 
Optimisation methods may only provide a local optimum, which is not necessarily the optimum solution 
of the given problem. For example, the genetic mechanism is able to produce a set of parameters to 
localise the optimum in a given search space, however, there is no way to determine whether the set of 
obtained parameters represents the global minimum (Levasseur et al., 2009). In this case, a possible 
strategy to validate the result is to carry out several runs of the optimization process with different initial 
guesses, potentially converging on different solutions, and compare outputs (Finno and Calvello, 2005). 
Therefore, the obtained optimal solution may depend heavily on the initialization of the parameters.  
 
Overfitting is another potential issue with these methods. Since they assess each excavation stage 
independently and require a large number of measurements, the result of each computation may 
become overly constrained, especially in the first excavation stages when the movement is very small. 
 
While some of these drawbacks can be overcome by careful application, the optimisation methods 
mentioned above are all deterministic, simply neglecting all uncertainties and lacking the ability to 
provide any measures of confidence in the accuracy of the outputs they produce (Phoon et al., 2003). 
Therefore, a significant limitation on the use of these methods is imposed by the nature of the problems 
that the methods are employed to address in geotechnical engineering, that is, soil is a heterogeneous 
material with inherently random characteristics. The uncertainty associated with soil parameters is 
further increased by the limited scope of ground investigation programs and the variable ability of 
constitutive models to capture actual response, as well as any simplifications introduced in the numerical 
analyses. In addition, measurement error is another source of uncertainty that needs to be accounted 
for. In this context, adopting a probabilistic framework allows to quantify uncertainties in a rigorous 
manner.  
 

3 Bayesian inference for back analysis with field observations 
3.1 Bayesian definition of the ‘most probable’ parameters 
As described in previous sections, optimisation methods can effectively estimate model parameters by 
comparing computed and measured ground movements. These methods are deterministic and 
completely disregard the uncertainties inherent in natural processes. Therefore, they are not able to 
capture the distribution of the parameters and their ‘most likely’ values in a probabilistic setting. To 
represents how likely the parameters 𝚯 are to have generated the existing data set, the probability of 
event 𝚯 happening given the observation 𝐃 is described with the expression p(𝚯	|	𝐃). Therefore, back 
analysis aims to find the set of parameters 𝚯 most likely to generate the existing data set 𝐃, which is 
equivalent to maximising the probability p(𝚯	|	𝐃). This approach is called maximum a posteriori (MAP) 
estimation. The MAP estimate is also equivalent to the mode of the probability distribution p(𝚯	|	𝐃) and 
this set of values is indeed the ‘most probable’ set of parameters.  
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The probability p(𝚯	|	𝐃) can be regarded as the posterior estimate in Bayes’ theorem and can be 
expressed as 

p(𝚯	|	𝐃) = 𝐩(	𝐃|𝚯	)𝐩(𝚯	)
𝐩(𝐃)

    (1) 

 
In the Bayesian (or epistemological) perspective, probability can be interpreted as a measure of the 
degree of belief. Thus, the whole process can be viewed as the evolution of the degree of belief in the 
parameters 𝚯 , which is p(𝚯)  before seeing the evidence, and p(𝚯 ∣ 𝐃 )  after accounting for the 
evidence, observations 𝐃.  
 
The likelihood function p(𝐃	|	𝚯)  expresses how probable the observed data is, given different 
parameters 𝚯. p(𝚯) is called prior distribution, and represents our knowledge of which parameters are 
likely to generate the data before observations are obtained. The prior distribution p(𝚯) is defined over 
the space of possible parameters and can be any type of distribution.  
 
The denominator p(𝐃) is called the model evidence and ensures that the posterior distribution is a valid 
probability density function: 
 

p(𝐃) = ∫ p(𝐃	|	𝚯)p(𝚯)𝐝𝚯			          (2) 
 
In general, integrating over all possible parameters to compute this integral can be hard, especially when 
the model is non-linear (Murphy, 2012). Numerical techniques, therefore, need to be employed in all 
practical cases. A sampling method, such as Markov chain Monte Carlo (MCMC), can efficiently estimate 
such integral (Murphy, 2012). 
 
3.2 Maximum a posteriori estimation (MAP) 
If we are only interested in the 'most probable' values of the parameters rather than the probability 
distribution of the parameters, we may maximise the posterior as a function of 𝚯.  
 

𝚯
^
./0 = 𝐚𝐫𝐠𝐦𝐚𝐱{p(𝚯	|	𝐃):𝚯} = 𝐚𝐫𝐠𝐦𝐚𝐱{p(𝐃	|	𝚯)p(𝚯):𝚯}      (3) 

  
If the posterior distribution of the parameters is known, then the MAP estimate is the mode of the 
posterior distribution, by definition. When computing the whole distribution is too costly, we can use 
the MAP estimator, defined in Eq.4, to compute a point estimate. 
Taking the logarithm of the estimator, we observe that 
 

𝚯
^
./0 = 𝐚𝐫𝐠𝐦𝐚𝐱{𝐥𝐨𝐠p(𝚯	|	𝐃):𝚯} = 𝐚𝐫𝐠𝐦𝐚𝐱;𝐥𝐨𝐠<p(𝐃	|	𝚯)p(𝚯)=:𝚯>   (4) 

 
There is a trade-off between likelihood and prior in shaping the posterior. In the process, the likelihood 
becomes more dominant as we get more data. When the number of observations becomes sufficiently 
large, the likelihood will overwhelm the prior, which will then have a diminished impact on the posterior. 
In this case, the MAP estimate will approach the maximum likelihood estimate. On the other hand, the 
MAP estimate is very desirable when the amount of data is small, and especially when it is of the same 
magnitude as the number of parameters.  
 
3.3 Bayesian back analysis in current applications 
There are many successful applications of Bayesian inference in geotechnical engineering, for example: 
pile capacity analysis (Najjar and Gilbert, 2009), predictions for the depth of scour hole and its 
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uncertainty assessment (Bolduc et al., 2008; Briaud et al., 2014), slope stability studies (Zhang and Goh, 
2013), and parameter characterisation based on laboratory tests (Jung et al., 2009; Houlsby and Houlsby, 
2013). In this paper, only the application of Bayesian inference to the back analysis of staged excavations 
is addressed. 
 
Back analysis of supported excavations case histories using the Bayesian method was implemented with 
a regression model, known as the Kung-Juang-Hsiao-Hashash (KJHH) model, consisting of three multi-
variate polynomial equations to predict the surface settlement profile, the maximum ground settlement, 
and the maximum wall deflection (Hsiao et al., 2008; Kung et al., 2007). The power and coefficients of 
the functions were derived from synthetic finite element analyses of braced excavations on a flat ground 
surface in soft to medium stiff clays. The KJHH model only used the properties of the softest soil and the 
supporting structures to predict wall and ground settlements. The predictions were improved stage by 
stage through updating of the bias factor embedded in the prediction model. The Bayesian method 
provided an approach for back analysis yielding useful results even with limited observations and 
simplified models.  
 
Wang et al. (2012) also adopted the KJHH model and updated two parameters: 𝐒𝐮

𝛔𝐯C
 and 𝐄𝐢

𝛔𝐯C
 (the ratio of 

shear strength over vertical effective stress and the ratio of initial Young’s modulus over vertical effective 
stress) based on the maximum horizontal wall deflections. The authors validated this approach with 
centrifuge simulations and showed that the accuracy of the maximum settlement prediction can be 
improved and the model uncertainty reduced with Bayesian updating. They applied the same procedure 
to a case history, the Taipei National Enterprise Centre (TNEC), which is a seven-stage excavation in soft 
to medium clay (Wang et al., 2013). The soil parameters were updated with the observations of the 
maximum wall deflection measured at a stage in the excavation and then used to refine the predicted 
wall response in subsequent excavation stages. The potential for building damage in the final excavation 
stage was assessed by calculating the damage potential index (DPI) based on the angular distortion and 
lateral strain using empirical equations. 
 
Hsein Juang et al. (2013) extended the work of Wang et al. (2012) on the TNEC case history by adding 
the Metropolis-Hastings (MH) algorithm-based Markov Chain Monte Carlo (MCMC) method to the 
implementation. Different prior distributions of the unknown parameters were tested to assess their 
impact on the predictions. The results showed that the prior had a significant impact on the posterior 
distribution, especially when there was only one measurement point.  
 
Qi and Zhou (2017) recognized that the KJHH model is only applicable to cases involving soft to medium 
clays. They developed a regression model to describe this subset of problems by using a response surface 
method (Box and Draper, 1987) based on finite element modelling of ground movement at 49 locations 
of different wall sections in 11 case histories. The model describes the relations between 17 parameters 
(cohesion, friction angle, and elastic modulus for six soil types from soft to stiff) and the maximum wall 
deflections. Since only one measurement of wall deflection is available at each stage, Bayesian inference 
was used with the regression model to update 3 parameters at a time. The other 14 parameters 
remained constant as the values taken from laboratory tests. They applied this approach to a four-staged 
excavation case in Hangzhou, China. The results showed the prediction of the final stage improved after 
each excavation stage. 
 
Comparing with the optimisation methods in section 2, the Bayesian approach is shown to be superior 
to other methods for back analysis in many aspects. 1) The uncertainty in the soil parameters can be 
adequately considered. The updated parameters and the predictions are reported as distributions. This 
can be used for obtaining further quantities of interest, for example, to evaluate the reliability of the 
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system by constructing a limit state function related to the updated parameters. 2) The Bayesian method 
can logically incorporate other sources of information, such as prior knowledge and expert judgement. 
Multiple parameters can be updated with only one observation. 3) Sampling methods, such as MCMC, 
are able to find the global optimum of the solution. 4) The physical model is distinct from the algorithm 
used to update the parameters, and the explicit meaning behind those parameters allows us to assess 
their validity. In addition, the choice of MCMC algorithm makes no difference to the results of the 
process, although the rate of convergence and the computational time required might be affected. 
Information related to the deterministic predictive function, such as values for soil properties, can be 
secured at each stage and transferred to the next relevant case history as prior knowledge irrespective 
of the MCMC algorithm used for the modelling. 
 

4 Illustration case using Bayesian inference 
In this section, we focus on how to apply the probabilistic model and Bayesian inference in a case history 
to estimate soil properties based on the observation of wall deformations. For illustrating purposes, an 
empirical geotechnical design method (Clough and O’Rourke, 1990) is applied as the prediction model. 
The main advantages of using a simple empirical method as the deterministic function are: 1) the relation 
between data and parameters of interest is direct, and the likelihood and posterior can be formulated 
explicitly; 2) the computational cost is low; 3) The number of unknown parameters that needs to be 
estimated is low. 
 
4.1 Clough and O’Rourke method  
Clough and O’Rourke (1990) estimated the movement caused by excavations in clay on the basis of 
plasticity principles and the factor of safety against base failure. As shown in Figure 1, the quantity of 
interest, i.e., the maximum lateral movement (δGHI), normalized by the excavation depth (HL), is plotted 
versus the system stiffness (S) for the various values of load resistance ratio (LN) against basal heave. The 
system stiffness is defined as S = EI/γThHVWX , where E denotes the Young’s modulus of the wall, 𝐈 the 
moment of inertia of the wall section, γT the unit weight of water, and hHVW the average vertical spacing 
of the struts. 
 
 
The load resistance ratio is defined according to Terzaghi (1943), as  
 

LN =
Z
[
\]^_`
abc__d

       (5a) 

 
for a wide excavation with width larger than √𝟐w, where w is distance between the excavation base and 
the firm stratum. Otherwise it is calculated as 
 

LN =
Z
[

\]^_`
ab h

√h
c__
i

       (5b) 

 
We use Sjk and Sjj as the undrained shear strength below and above the excavation level, respectively, 
and B to denote the width of the excavation, γ the unit weight of the soil, and HL the excavation depth. 
Bearing capacity, Nn, is defined as 
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Nn =
𝟒
𝟑
qlog q uv

^_wxy
z + 1z + 1   (6) 

 
where 𝐄𝐬  is the elastic modulus of the clay for undrained deformation and SjHVW  is the average 
undrained shear strength of the clay.  

 
 
4.2 Parameterizing of Clough and O’Rourke design chart 
The chart in Figure 1, often used in conventional design, was empirically derived. The curves in the chart 
can be thought of as the contours of a surface, which represents the inter-dependency of the normalized 
deflection, the system stiffness, and the factor of safety against heave. In order to produce an estimate 
of deflection for any combination and value of the variables, we need to construct a continuous 
description of such dependency to be integrated into the Bayesian inference approach. 
 
Following the argument developed in Gardoni et al. (2009), Bayesian regression and Bayesian variable 
selection are used to develop an analytical formulation which describes the relation between ~�w�

[�
 , S, 

and L𝐑. The logarithmic variance stabilizing transformation, introduced in Box and Cox (1964), is adopted 
to change the problem variables into: y = ln �~�w�

[�
�, xZ = ln(S), and x� = ln(LN), respectively. Data 

used in the regression analysis were generated by discretizing the curves in the Clough and O’Rourke 
design chart (30 data points from each curve). 
 
In view of the log-transformation, the regression model with all candidate explanatory variables can be 
expressed as follows:  
 

y = θZ + θ�xZ + θ�x� + θXxZ� + θ�xZx� + θ�x�� + θ�xZ� + θ�xZ�x� + θ�xZx�� + θZ�x�� + εσ 
(7) 
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In which 𝛉 = (θZ, θ� …θZ�) is the vector of the unknown coefficients of the variables, σ is the model 
standard deviation, and 𝛆 is a vector of Gaussian random variables with zero mean and unit variance. A 
regression analysis was conducted first by using all variables. Table 1 shows the posterior statistics of the 
estimated coefficients and their corresponding coefficient of variance (COV). 
 
Table 1 Posterior statistics of the coefficients in the first phase 
 

θ θZ θ� θ� θX θ� θ� 

Mean 3.509 -0.817 -5.150 0.021 0.668 2.101 

Variance 0.346 0.191 0.434 0.035 0.122 0.372 

COV 0.099 0.233 0.084 1.682 0.182 0.177 

       

θ θ� θ� θ� θZ� σ 

Mean 0.003 -0.043 -0.032 -0.702 0.084 

Variance 0.002 0.009 0.038 0.187 0.006 

COV 0.740 0.216 1.202 0.266 0.066 

 
 
 
A stepwise deletion process, Bayesian variable selection, was applied to remove the least informative 
variables and simplify the model (Gardoni et al., 2002; O’Hara et al., 2009). During this process, the 
variables with the largest variance were iteratively eliminated one by one until the model error 
significantly increased beyond the required model accuracy. Following this strategy, we first deleted the 
variable term ln(S)� since it has the largest COV (= 𝟏. 𝟔𝟖𝟐) as shown in Table 2. After each elimination, 
we assessed the reduced model with Bayesian regression recursively and found that the model error 
grew significantly higher after the fifth term was deleted. Therefore, we only removed the first four 
terms, but kept the remaining ones as needed explanatory variables. Figure 2 summarizes this stepwise 
deletion process, showing the COV of the candidate variables (solid blue dots corresponding to the left 
axis) and the posterior mean of the model error (open black square corresponding to the right axis) at 
each step. Table 2 lists the posterior statistics of the selected parameters.   
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Table 2 Posterior statistics of parameters of selected model 

 θZ θ� θ� θ� θ� θ� θ� σ 
Mean 3.206 -0.673 -4.393 0.545 0.860 0.004 -0.035 0.084 
Standard deviation 0.120 0.033 0.263 0.092 0.062 0.000 0.008 0.006 

Correlation coefficient (×10-2) 

θ� -0.335        
θ� -2.191 0.602       
θ� 0.730 -0.207 -2.044      
θ� 0.203 -0.051 -0.576 0.070     
θ� 0.003 -0.001 -0.006 0.002 0.000    
θ� -0.063 0.018 0.180 -0.070 -0.005 0.000   

σ 0.007 -0.002 -0.021 0.008 0.000 0.000 -0.001  
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Based on  
 
Table 2 the formulation used to calculate the maximum deflection from the design chart in Clough and 
O’Rourke (1990) is: 
 
ln �~�w�

[�
� = 𝟑.𝟑𝟐𝟔 − 𝟎. 𝟔𝟕𝟑lnS − 𝟒. 𝟑𝟗𝟑lnLN + 𝟎.𝟓𝟒𝟓lnSlnLN + 𝟎.𝟖𝟔𝟎(lnLN)𝟐 + 𝟎. 𝟎𝟎𝟒(lnS)𝟑 −

𝟎.𝟎𝟑𝟓(lnS)𝟐lnLN  (8) 
 
The contours derived from Eq.9 are plotted against the original design chart in Clough and O’Rourke 
(1990) in Figure 3. 
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4.3 Probabilistic model for Bayesian inference 
As discussed in section 3, the definition of ‘most probable’ is proposed here in a probabilistic perspective, 
in which the soil parameters are treated as random variables. Before Bayes theorem (Eq.1) is used to 
obtain the posterior distribution of parameters and MAP estimates, the likelihood (a probability function 
of 𝛉) needs to be constructed. A probabilistic and unbiased predictive model is developed following 
Gardoni et al. (2002) to describe the relations between lateral ground movement and the soil parameters 
and to consider uncertainties both in parameters and measurements. The probabilistic model is defined 
as  
 

D(𝚯,𝛗¢) = f
^
<𝛉,𝛗¢= + σε¢                 (9) 

 

f
^
<𝛉,𝛗¢= is the deterministic function predicting the response of the system, which in this application is 

taken as the Clough and O’Rourke method, expressed in Eq.2. 𝛉 denotes the vector of unknown soil 
parameters, 𝛗¢ is the vector of known soil parameters, ε¢ is a random variable with standard normal 
distribution, and σ� is the variance for the given deterministic function.  
Based on the probabilistic model, when the measurement of the maximum deflection at stage k, for k =
1… m, D¢ , is available, the likelihood function can be constructed following a transformation of the 
probability space from ε¢ to D (Tang and Ang, 2007). The resulting likelihood function is in the form of a 
multivariate normal distribution as shown in Eq.11. 
 

p<D¢ ∣∣ 𝚯 = ∝ (2πσ�)bZ/�exp ª−
𝟏
𝟐«h

¬D¢ − f<𝛉,𝛗¢=­𝟐®														(10) 
 
Then, Bayes theorem expressed in Eq.1 can be applied to obtain the posterior distribution of the 
unknown soil parameters 𝛉. For example, the posterior at stage 1 is 
 

p<𝚯|D𝟏=) ∝ p<D𝟏 ∣∣ 𝚯 =p(𝚯)											k = 𝟏                                 (11) 
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This process can be repeated at each stage when a new observation becomes available, in a sequential 
use of Bayesian inference. The posterior obtained in the latest stage contains all the knowledge learnt 
throughout the process and brings all the information, subjective and objective, as a prior into the next 
stage. The posterior of the unknown parameters at stage 𝐤 is  
 

p<𝚯 ∣∣ DZ, … , D¢ = ∝ p<D¢ ∣∣ 𝚯 =p<𝚯 ∣∣ DZ, … , D¢bZ =								k = 2, . . . m     (12) 
 
We use the collection of all samples drawn from p< 𝚯 ∣∣ DZ, … , D¢ = to approximate the posterior density 
and to compute the quantiles, the moments, and the other statistics of interest. We can also obtain the 
mode of the posterior distribution which represents the ‘most probable’ set of the unknown parameters. 

The predictive estimate of maximum deflection D
~

 for a later stage, stage k + i, can be computed by  
 

D
~
<𝛗𝐤²𝐢= = ∫ D<𝚯,𝛗𝐤²𝐢=p<𝚯 ∣∣ DZ, … , D¢ =d𝚯     (13) 

 
4.4 FEDC project description and site conditions 
The Ford Engineering Design Center (FEDC) excavation project is used to illustrate the Bayesian inference 
process described in previous sections. The project is located on the Northwestern University campus in 
Evanston, Illinois, and consists of a 44 m x 37 m internally braced excavation with uneven initial elevations 
on adjacent sides. Figure 4 shows a plan view of the site, including initial site elevations, dimensions of 
the excavation, support system geometry and layout of the instrumentation. For a more detailed 
description of this project, see the paper by Blackburn and Finno (2007). 
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Soil properties determined through field testing are presented in Table 3 and Figure 5, showing large 
variations due to the scatter in the data.  
 

 
 
Table 3 Engineering properties of soil stratigraphy (Blackburn and Finno, 2007) 
 

Layer Elevation (m ECD) Engineering properties (from CPT 
testing) 

Sandy fill 5.2 ~ 4.2 φ' = 44 - 48°;  

Medium silty sand 4.2 ~ 2 φ' = 42 - 44°;  

Silty fine to medium Sand 2 ~ 0 φ' = 30 - 38°;  

Blodgett stratum, soft clay -0.9 ~ -4.9 Su = 30 - 120 kPa  

Deerfield stratum, medium clay -4.9 ~ -13.1 Su = 6 - 127 kPa  

Park Ridge stratum, stiff silty clay -13.1 ~ -16.8 Su = 60 - 251 kPa  

Hardpan -16.8 ~ -20.7 Su > 100 kPa  

 
The construction sequence is summarized in Table 4. The excavation reached a final elevation of −3.8 m 
from Evanston City Datum (ECD), which is in the Blodgett stratum. 
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Table 4 Major construction stages for the FEDC case history 
 

Excavation 
Stage 

Activity 

0 Potholing and sheet pile installation 

1 Excavate to +0.9 m ECD and install/prestress first level of support at +1.5 m ECD  

2 Excavate to -1.5 m ECD and install/prestress first level of support at -1.0 m ECD 

3 Excavate to -3.8 m ECD  

 
Inclinometer-2 (I-2) was chosen to be the observation data in this analysis because it had the maximum 
deflection and was located in the middle of the plane surface of the north wall, where the influence of 
the corners was minimal. The deflection measured by I-2 (reset after wall installation) is shown in Figure 
6. The maximum cumulative deflection values from Stage 1 to Stage 3 are 2.5 mm, 5 mm, and 14 mm. 

 
 
4.5 Bayesian inference with Clough and O'Rourke method 
In this section, we plan to infer the shear strength Sj based on the observations obtained in the field 
during construction. The observations are the maximum deflections at Stage 2 and Stage 3, which are 5 
mm and 14 mm. The model is updated sequentially after Stage 1, because the Clough and O’Rourke 
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method is not applicable to the cantilever stage. Based on the posterior of Sj obtained at Stage 2, the 
model will predict the maximum deflection at Stage 3. To evaluate the posterior distribution of the 
unknown parameters, the Delayed Rejection Adaptive Metropolis-Hasting (DRAM) algorithm (Haario et 
al., 2006), a variant of the Markov Chain Monte Carlo (MCMC) method was employed. 
 
The function (Eq.8) developed for the Clough and O'Rourke method will be applied as the deterministic 

function to compute the estimate f
^
<𝛉,𝛗¢= in Eq.10. Two parameters are used to describe Sj: the shear 

strength at the top of soil layer Sj�, and the gradient r^_  of Sj with depth. The undrained shear strength 
below the excavation level is Sjk = Sjµ +

𝟏
𝟐
(HL + H)r^_ ; the undrained shear strength above the 

excavation level is Sjj = Sjµ +
𝟏
𝟐
HLr^_ ; and the average shear strength is SjHVW = Sjµ +

𝟏
𝟐
Hr^_ , where 

𝐇 is the height of the retaining wall. 
 
In this application, the unknown soil parameters are 𝛉 = <𝐒𝐮𝟎, 𝐫𝐒𝐮= and the known parameters are 𝛗 =
<E, I, γT, hHVW, B, γ, HL, Ej=, summarised in Table 5 with values taken from Bryson and Zapata-Medina 
(2012) and Finno et al. (2007). 
 
4.5.1 Prior and posterior distributions of parameters 
The mean of the prior distribution was selected according to the approximate value in Blackburn and 
Finno (2007) and the range of the parameters was set as the widest variation from laboratory testing. A 
coefficient of variance of 0.4 was assigned to the prior, which means we have moderate confidence in 
the mean value.  
 
Table 5 Summary of parameters (Blackburn and Finno, 2007) 
 

Soil properties unit weight of soil γs=19 kN/m3  
average soil stiffness Eu=3789 kPa  
unit weight of water γw=9.78 kN/ m3 

Structure properties width of the excavation B=36.8 m  
length of the wall H=14.8 m  
stiffness of retaining wall EI=58000 kNm2/m  
vertical strut spacing for stage 2 havg-stage2=1.5 m 
vertical strut spacing for stage 3 havg-stage3=2.65 m 

Prior knowledge shear strength at the top of soil layer 
Sj�~N(40,16), with the range [10,120] 
gradient of shear strength along depth 
r^_~N(1,0.4), with the range [0,10] 

 
The posterior distribution after each stage is plotted in Figure 7 and its mean, variance, and coefficient 
of variation (COV) are shown in Table 6. The variance of the posterior decreases at each stage, implying 
that engaging observations reduces the uncertainties in the parameters. The designer’s confidence on 
the posterior parameters should also increase after each stage as the values of COV decrease. The 
reduction in the variance is more significant for Sj�  than r^_,  indicating that the former is a more 
sensitive parameter in this model than the latter. The modes of the posterior distributions of Sj� and r^_  
after final stage are 47.904 kPa and 1.453 kPa/m, which then become the most probable values of the 
unknown parameters. Given the these results, the most probable value of average shear strength for the 
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Blodgett stratum is 52.1 kPa and 62.3 kPa for the Deerfield stratum, which are higher than the average 
value of shear strength derived from field testing (as shown in Figure 5). This result shows that the most 
probable values produced by Bayesian inference are less conservative than those estimated from in-situ 
tests. These ‘most probable’ values could then be used as a starting point for design of another project 
in similar soil conditions and construction sequence. Furthermore, the posterior distribution can also be 
used to calculate the probability of failure of the design.  

 
 
Table 6 Posterior statistics 
 

Sj�	(𝐤𝐏𝐚) 
 

Stage Mode Mean  σ  COV  

Prior 40.0 40.0 16.00 0.400 

2 44.6 40.3 4.84 0.120 

3 47.9 46.6 3.61 0.078 

 
r^_  

 

Stage Mode Mean  σ  COV 

Prior 1.000 1.000 0.400  0.400 

2 0.709 1.008 0.380 0.377  

3 1.453 1.470 0.316 0.215 

 
A credible interval is a range in which an unknown parameter value falls with a certain probability, such 
as 85%. The purple shaded area plotted in Figure 8 is the 85% credible interval of the posterior shear 
strength at Stage 3 and the blue shaded area is the 95% interval. The green and yellow shaded areas are 
the 85% and 95% intervals of the initial prior. We can see that the range of the shear strength has 
significantly narrowed after taking into consideration the observations obtained during construction. 
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4.5.2 Prediction of deformation 
The estimate of deformation for later stages, obtained based on the initial prior and the posterior after 
Stage 2, is shown in Figure 9. The prediction for Stage 3 improves after the observations from Stage 2 are 
incorporated through Bayesian updating: the error in the prediction based on the initial prior and the 
posterior after Stage 2 is reduced from 4.30 mm to 2.00 mm (Table 7). Since the prior has a significant 
impact on the posterior distribution when the number of observation is very limited, the fit at Stage 2 is 
still mostly controlled by the prior. The impact of a poorly chosen prior gradually fades away when more 
observations are obtained so the goodness of fit at Stage 3 is improved than it at Stage 2. 
 
Table 7 Error of predictions for later stages and fit at current stage 
 

Error (mm) Initial prior Stage 2 Stage 3 

Stage 2 2.500 1.900 - 

Stage 3 4.300 2.000 0.200 

 

 
 



 

CDBB Publication Series 
October 2018   CDBB_JP_004 

19 

 
5 Conclusions 
Since the ‘most probable’ condition is defined vaguely in design codes and guidelines, it is inevitable to 
resort to statistical approaches to quantify these parameters, but some confusion still persists on how 
to handle uncertainties in practice. The process of obtaining ‘most probable’ parameters can be 
standardized using the Bayesian inference method. Obtaining ‘most probable’ parameters in a 
probabilistic approach has the following advantages: (1) this set of parameters is designed to produce an 
unbiased estimate of ground movement, which is truly and rigorously most likely to occur in practice; (2) 
the randomness in the parameters is explicitly accounted for and confidence intervals can be drawn 
around mean values; (3) the posterior distribution of the parameters properly accounts for all sources of 
information, objective and subjective, through the likelihood functions and prior distributions. 
 
The parametrised Clough and O’Rourke method proposed in this work can be used either during 
excavation construction for a rapid estimation of the maximum deflection for later stages, or before 
construction based on the case histories collected in similar ground conditions. Although it is a simple 
empirical method, its prediction based on the updated parameters is sufficiently accurate for a rough 
assessment with a very limited amount of data. If there are more excavation stages and more 
observations in a staged excavation, the prediction is expected to be more accurate.  
 
Lastly, it is worth emphasising that the framework of Bayesian inference for sequential back analysis can 
be applied to all staged excavation projects. Clough and O’Rourke method, as the deterministic function 
in the probabilistic model, can be replaced by any other method for retaining wall design. The procedure 
illustrated here can be applied to more complex numerical, constitutive and geometrical models at more 
closely spaced time intervals to update the quantities of interest while construction is actively 
progressing and assess the design iteratively within the context of the OM. However, sufficient 
computational capability and number of observations are required for Bayesian inference with a more 
complex deterministic function such as the finite element method. 
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Nomenclature 
 
Greek Symbols 
𝚯 Unknown parameters 
𝛉 Unknown soil parameters 
δGHI Maximum lateral ground movement 
φ  Vector of known soil parameters 
γT Unit weight of water 
σ Standard deviation 
ε Random variable with standard normal distribution 
Roman Symbols 
B Width of the excavation 
𝐃 Observations 
D Observation point 
W Distance between excavation base and firm stratum 
LN Load resistance ratio  
S System stiffness 
Sj Undrained shear strength 
Sjk Undrained shear strength below the excavation level 
Sjj Undrained shear strength above the excavation level 
Sj� Shear strength at the top of soil layer  
SjHVW Average undrained shear strength of the clay 
Nn Bearing capacity 
HL Excavation depth  
H Height of the retaining wall. 
E Young’s modulus of retaining wall 
E¾ Elastic modulus of the clay for undrained deformation   
I Moment of inertia of the wall section 
hHVW Average spacing of the struts 
r^_  Ratio of shear strength with depth 
Subscripts 
k number of stages  
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